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Recently iterative procedures have been proposed for track and vertex fitting in counter experiments. We show that the proper 
theoretical framework for these procedures is the theory of linear filtering, in particular the Kalman filter. Using results from filtering 
theory we confirm and extend the previous results. We also discuss the detection of outliers and of secondary vertices. 

1. I n t r o d u c t i o n  

The "progress ive 'method of track fitting [1,2] which 
is used in the data analysis program of the DELPHI  
collaboration has some substantial advantages as com- 
pared with other methods, in particular the "global"  
method [2]: 
- It is suitable for combined track finding and track 

fitting. 
No  large matrices have to be inverted and the num- 
ber of computations increases linearly with the num- 
ber of measurements in the track. Therefore it is fast 
even in the presence of multiple scattering and many 
measurements. 

- The estimated track parameters follow closely the 
physical track. 

- The linear approximation of the track model needs to 
be valid only over a short range. 
The progressive method has, however, one funda- 

mental drawback: The track parameters are known with 
optimal precision only after the last step of the fit, i.e. 
usually at the inner end point of the track or track 
segment. In the presence of multiple scattering this has 
several consequences: 
- Predictions into detectors further outwards are not 

optimal. 
- The power of discrimination between measurements 

which may all belong to the track is rather poor at 
the begin of the track fit. 

- Since the aim of the track fit is the optimal knowl- 
edge of the track parameters as close to the vertex as 
possible, the fit has to proceed towards the interac- 
tion region. This effectively prohibits the use of the 
progressive method in the forward region of the 
DELPHI  detector [3], where is it natural to proceed 
from the TPC with its good track element towards 
the forward drift chambers [3]. 
It is the purpose of this note to show that these 
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difficulties can be overcome by applying techniques of 
linear filtering to track fitting. This has been proposed 
already some years ago [4], without success, as it seems, 
as the method was never used in practice. 

In the framework of filtering theory the progressive 
method can be regarded as an extended Kalman filter. 
The smoothing part of the Kalman filter will be seen to 
be a very useful complement which solves the problems 
mentioned above and makes the progressive method a 
powerful, flexible and efficient tool not only for track 
fitting, but also for the computat ion of optimal predict- 
ions and interpolations, for outlier detection and rejec- 
tion, and for merging of track segments. 

In section 2 we clarify the relations between track 
fitting and filtering. In section 3 we present the main 
properties of the linear Kalman filter. In section 4 we 
discuss the application of the extended Kalman filter 
and the corresponding smoother to track fitting and 
track element merging. For the interested reader, the 
detection of outliers is investigated in a formal way in 
section 5. In section 6 we show that also the recursive 
vertex fit proposed in ref. [2] can be understood as an 
iterated Kalman filter. Finally, in section 7, we discuss 
the detection of secondary vertices. 

2 .  R e l a t i o n s  b e t w e e n  t r a c k  f i t t i n g  a n d  f i l t e r i n g  

Track fitting deals with the estimation of track 
parameters; filtering deals with the analysis of (linear) 
dynamic systems [5,6]. We can apply filtering tech- 
niques to track fitting if we regard a track in space as a 
dynamic system. This can be done quite naturally by 
identifying the state vector of the dynamic system with 
a vector x of 5 parameters uniquely describing the track 
in each point of its trajectory. This state vector x can be 
written as a function of a suitable coordinate, e.g. z: 

x = x ( z ) .  
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The evolution of the state vector x as a function of z 
can be described by a set of differential equations. For 
practical purposes, however, it is sufficient to consider 
the state vector only in a discrete set of points, e.g. in 
the intersection points x ( zk )  of the track with the 
detectors. Thus we obtain a discrete dynamic system, 
the evolution of which can be described by a simple 
system equation: 

x ( z k ) = - x ~ = A _ ~ ( x ~  ,)+w~_~. (1) 

fk-1 is the track propagator from detector k - 1  to 
detector k; the random variable wk_ ~ incorporates a 
random disturbance of the track between zk 1 and z k 
due to multiple scattering, wk_ ~ is called the process 
noise in the terminology of dynamic systems. 

The state vector is normally not  observed directly. 
Generally speaking, mk, the quantities measured by 
detector k, are functions of the state vector, corrupted 
by a measurement noise ~k- This is described by the 
measurement equation: 

mk = h k ( x k )  + (k (2) 

We assume in the following that all w k and all Ck are 
independent,  unbiased and of finite variance. 

In the simplest case, both the functions [k and the 
functions h k are linear. We then speak of a discrete 
linear dynamic system. In the next section we discuss 
the analysis of such a system, in particular the estima- 
tion of the state vector (track parameters). 

3. Main properties o f  t h e  discrete linear Kalman f i l t e r  

The theory of the Kalman filter is described in many 
textbooks (e.g. refs. [5-8]). In its linear form the Kal- 
,nan filter is the optimal recursive estimator of the state 
vector of a (discrete) linear dynamic system. In such a 
system the evolution of the state vector is described by a 
linear transformation plus a random disturbance w, 
which is the process noise: 

xk = F k - l x *  1 d- Wk_ 1. (3) 

The measurements are linear functions of the state 
vector: 

tnk = H k x  k + c k. (4) 

By assumption all w k and all ~k are independent and 
have a mean value of zero. 

The evolution of the state vector as indicated by the 
index k may proceed in space, as in the case of track 
fitting in a detector, or in time, as in radar tracking of a 
spacecraft (in fact the origin of the method), or along a 
dimensionless integer, as in the common vertex fit of 
several tracks. 

There are three types of operations to be performed 

in the analysis of a dynamic system (here described in 
terms of " t ime") :  
- Filtering is the estimation of the "presen t"  state 

vector, based upon all "pas t "  measurements. 
Prediction is the estimation of the state vector at a 
°' future" time. 

- Smoothing is the estimation of the state vector at 
some time in the "pas t "  based on all measurements 
taken up to the "present"  time. 
The Kalman filter is the opt imum solution of these 

three problems in the sense that it minimizes the mean 
square estimation error. If w k and c k are Gaussian 
random variables, the Kalman filter is the optimal 
filter; no nonlinear filter can do better. In other cases it 
is simply the optimal linear filter. 

We give now the formulae for prediction, filtering 
and smoothing, with the following notations and as- 
sumptions: 

System equation: 

x k . , = F k - l x k - l . , +  wk 1" (5) 

Measurement equation: 

m k =  Hkxk., + ~k, (6) 

e{ wk) =0, cov(wk) =a~, 

E ( % )  = 0 ,  cov (c  k)  = V  k = G k  1, 

with 
xk. t = true value of the state vector at time k; 
x~ = estimate of xk.t, using measurements up to time i 

(i < k: prediction, i = k: filtered estimate, i > k: 
k is simply written as xk; smoothed estimate), x k 

i C~ = c o v { x k  - x~, ,} ;  

r~ = residual m k -  Hkx~; 
R~, = coy{ r~ ). 
Prediction: 

Extrapolation of the state vector: 

k - 1  
x k = F k l X k - I  • 

Extrapolation of the covariance matrix: 

C~ -1 = F k - l C k  1F~-1 + Ok-1.  

Residuals of predictions: 

4 - '  = mk - H k x ~ - ' .  (7) 

Covariance matrix of predicted residuals: 

$4 t~ k -  ll,4 T R~ -1 = Vk + ", ' , -k  ..•-- 

Filtering (gain matrix formalism): 
Update  of the state vector: 

x~=x~-l +K~(m~-M~x~-'). 
Kalman gain matrix: 

K k =  C ~ - , H T ( V k  k-1 T - I  + HkC k H k )  

v = C k H k G  k . 
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Update of the covariance matrix: 

C, = ( I -  KkH, )C  k 1. (8a) 

Filtered residuals: 

r, = m k - Hkx k = (I -- HkK k ) r [  -1. 

Covariance matrix of filtered residuals: 

R k = ( I -  HkKk)V k = V k -  HkCkHk T. 

X 2 increment: 

X 2 = rTRk l rk .  

X 2 update: 

: 1 + 

Filtering (weighted means formalism): 
Update of the state vector: 

Xk = Ck [ k 1 l x k - 1  T ( C k )  k + HkGkmk] .  

Update of the covariance matrix: 

C ,  = [ (C~,-1)-1  + H [ G k H ,  (8b) 
- 1  

X a increment: 

2 r T  k 1 X +  ,Gkrk + ( x ,  k - l \ T [ ~ , k  1 1 = - x ,  ) ) ( x , - x , ) .  

X 2 update: 

Smoothing: 
Smoothed state vector: 

x~, = xk + Ak ( xf, + l - x~ + l ). 

Smoother gain matrix: 

T k --1 Ak = CkFk ( C k + l )  • 

Covariance matrix of the smoothed state vector: 

C n k T C ; = C k + A k (  k+, - C k + I ) A , .  (9) 

Smoothed residuals: 

r ;  = r k - Hk (x~, - xk)  = m k - H,x~,. 

Covariance matrix of smoothed residuals: 

k T T n T R n = R k -  H k A k ( C k +  1 C k + l ) A k H k  = V  k . _ _ H k C k H  k . k 

We make the following observations: 
(1) The gain matrix formalism and the weighted 

means formalism of the filter are equivalent. The choice 
between the two depends on the dimensions of the state 
vector and the measurement vector. If the dimension of 
the state vector is small, the computation by weighted 
means is usually more efficient. 

(2) The filtered estimate of the state vector is unbi- 
ased and has minimum variance among all linear esti- 
mates using the same set of measurements. For Gaus- 
sian process noise and measurement errors it is efficient. 
The same is true for the smoothed estimates. Therefore 

the Kalman filter with a subsequent smoothing is equiv- 
alent to a global linear least-squares fit which takes into 
account all correlations arising from the process noise. 

(3) The computation time of the filter is proportional 
to the number of detectors and depends (in the weighted 
means formalism) very little on the number of measure- 
ments per detector. If the intermediate results of the 
filter are retained the smoother consists only of a few 
matrix multiplications and is thus very fast. 

(4) C k may also be expressed by the formula: 

C k = ( I - K k H * ) C  k I ( I - - K k H k ) T + K k V ,  K ~. 

One can show that this form is computationally super- 
ior to the form given above in eq. (8a), although it 
consumes more computer time (ref. [5], p. 305). 

(5) If there is no process noise (Qk = 0), smoothing is 
equivalent to back extrapolation, as can be verified 
directly from the smoother equations. 

(6) Inspection of the covariance matrix update equa- 
tions gives the following results, which are intuitively 
obvious: The variance of the filtered state vector is 
smaller than the variance of the predicted state vector 
(information from the measurement ink); the mean 
squared filtered residual is smaller than the mean 
squared predicted residual (the state vector is pulled 
towards the measurement); the variance of the smoothed 
state vector is smaller than the variance of the filtered 
state vector (information from all measurements); the 
mean squared smoothed residual is larger than the 
mean squared filtered residual (the state vector is pulled 
towards the true value). 

(7) The filtered residual vectors (also called innova- 
tions) are uncorrelated, in the Gaussian case even inde- 
pendent. This is a characteristic property of the Kalman 
filter. It also proves the X 2 update formula. 

4. Application to track fitting and track element merging 

In the presence of a magnetic field the track propa- 
gator (the system eq. (1)) is nonlinear. On the other 
hand, the measurement eq. (2) can usually be made 
linear by an appropriate choice of the state vector. In 
order to apply the concepts of linear filtering to track 
fitting, the track propagator has to be approximated by 
a linear function. This is done in the usual way by 
replacing fk by the first two terms of its Taylor expan- 
sion: 

L ( x : )  = f , ( x , )  + F , ( x : -  x , ) ,  (10a) 

F~ = 3 ~ / O x  k. (10b) 

As the point of expansion we choose of course the 
filtered estimate x k. Apart  from the state vector ex- 
trapolation, which now reads 

k 1 x ,  = f , _ l ( x k  , ) ,  (11) 
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the prediction, filter and smoother equations remain the 
same. This procedure is called an extended Kalman 
filter. 

The covariance matrix of the process noise, Qk, is 
computed in the same way as in the global fit, by 
integrating the effects of multiple scattering between 
detectors kand  k + 1 (see, e.g., ref. [9]). Consequently, 
the amount  of computing spent in the evaluation of 
derivatives and covariance matrices is exactly the same 
for both approaches. The only difference is in the 
inversion of covariance matrices. 

Note that in the absence of multiple scattering 
smoothing amounts  to an approximate linearized back 
extrapolation. If necessary the smoother can be further 
improved by re-expanding the function fk in the 
smoothed point. 

The combined fi l ter-smoother algorithm allows the 
computation of optimal estimates of the track parame- 
ters anywhere along the track, using the full informa- 
tion. This has several consequences, which constitute 
substantial improvements of the simple progressive fit: 

(1) It is possible to compute optimal predictions into 
other detectors from both ends of the track or track 
segment as well as optimal intersections of the track 
with a detector, e.g. a RICH. 

(2) By removing the measurement m k from the 
smoothed estimate x~ one obtains an optimal estimate 

"* of the track in the intersection point with detector xk 
k which uses the full information with the exception of 
mk. This estimate can be used for the detection of 
outliers (see section 5) and for checking and tuning of 
the detector alignment and resolution. It can be com- 
puted successively for all detectors in one single go of 
the smoother, m k can easily be removed from the 
estimate x~ by an "inverse Kalman filter". Formally 
this is a step of the filter with the covariance (or weight) 
matrix of m k taken negative: 

n .  n n x k = x  k + K ~ * ( m k - H , x k ) ,  

n *  n T n T - K ,  = + ) ' 

C~* = ( I -  K,~* H,)C,~, 

(12a) 

, (12b) 

(12c) 

or, in the weighted means formalism: 

n n - 1  n T xk* = C,~* [ (Ok)  x k - - S k G k m k ] ,  (12d) 

,,. _ T (12e) C k = [(C,~) -1 HkGkHk] ' 

The smoother can also be used for efficient track 
segment merging: Let us assume that two track seg- 
ments have been fitted individually in two different 
detector modules (fig. 1). In order to combine the 
information from the two segments: 
- the optimal estimate (filtered or smoothed) yf" is 

propagated to the reference surface of xn, yielding 
y(; 

- an updated estimate x" is computed as the weighted 
mean of x ,  and y(; 

- smoothing proceeds from x,' to x~" according to eq. 
(9) (see fig. 1). 
A possible drawback of the filter algorithm is the 

fact that one needs an initial value of the state vector 
together with its covariance matrix. This can be ob- 
tained by fitting a small number  of measurements at the 
start of the track by a conventional least-squares fit, but 
this is not an elegant solution. The other possibility is to 
start with an arbitrary state vector and an "infini te" 
covariance matrix, i.e. a large multiple of the identity 
matrix. This is completely in the spirit of the filtering 
approach, but may lead to numerical instabilities in the 
computation of the gain matrix, since the infinities have 
to cancel in order to give a finite gain matrix. This may 
be difficult on a computer with a short word length. 

5 .  D e t e c t i o n  o f  o u t l i e r s  

In the course of the analysis of an event, track fitting 
is performed normally after pattern recognition, i.e. 
after different measurements have been assigned to 
track candidates. The track fit serves not only to opti- 
mally estimate the track parameters but  also to assess 
the quality of this assignment. A commonly used mea- 
sure of this quality is the global X 2 of the track. 
Although the global X 2 is a powerful test against ghost 
tracks (random association of coordinates), it loses its 

X 1 
I 
xnl ' 

Xn Yl Ym 
I I I I I I I I I I I p 

Xn  yr~ Ym 

IWEIGHTED MEAN I [ PROPAGAT,ON OF PARAMETERS 

® ® 
Fig. 1. Track element merging by successive filtering and smoothing. 
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power against single outliers with increasing number of 
measurements. Outliers are measurements which do not 
belong to an otherwise well-defined track. They can be 
either correlated with the track, for example signals 
from 8-rays, or uncorrelated, like signals from neigh- 
bouring tracks or genuine electronic noise. Track cor- 
related outliers have a distribution around the true track 
position which depends on the physics of the underlying 
secondary process and on the properties of the detector. 
Uncorrelated outliers have, in principle, a flat distribu- 
tion in the whole detector volume; in practice their 
distribution is imposed by the selection mechanism of 
the track finding algorithm. 

The residuals of a global fit can be used to find 
outliers by rejecting measurements with large residuals, 
but this is only feasible if the residuals ("pulls")  are not 
dominated by multiple scattering. The Kalman filter 
and smoother offers the possibility to use locally the full 
information in order to decide whether a measurement 
is close enough to the track to belong with a high 
probability to it. A useful decision criterion or measure 
of "closeness" is the X 2 of the prediction: 

X2 k 1Vl--*-l~ I k-1 (13) = r k [M k ) rk . 

It can easily be shown that X~ is equal to the filtered 
chi-square X~: 

T - 1  X ~ = X 2 = r k ( R k )  r k. (14) 

If m k belongs to the track and the covariance matrix of 
its Gaussian errors is accurately known, X 2 is x2-dis - 
tributed with m k degrees of freedom, where m k is the 
dimension of mk. If m k is an outlier, X 2 is noncen- 
trally x2-distributed with m k degrees of freedom and 
the noncentral parameter X F: 

2~ v = dTGkRkGkd = dTGk (I - HkKk)d, (15) 

where d is the offset of the outlier with respect to the 
real track position: 

m k = Hkxk ,  , + d +  {k" (16) 

If X2v is larger than a given bound c, the measurement 
is rejected as an outlier. If c is chosen as the (1 - a )  
quantile of the appropriate X 2 distribution, the prob- 
ability to reject a good measurement is equal to a. The 
probability of rejecting an outlier (the power of the X 2 
test), as a function of rn k, a and k, F, is computed in the 
appendix. For a method to estimate accurately the 
covariance matrix of (k see, e.g., ref. [10]. A similar X 2 
test can be performed by using the smoothed residual: 

X 2 n T [ c . L n  --1 n = r k [Mj,) r k . (17) 

~* is the smoothed estimate of xk. t without using If x k 
m k (see eq. (12)) we have clearly (see also eq. (8a)): 

n n __ n ~  - " * + K k ( m  , nkx k ), ( lSa)  X k - -  X k 

KT, = CT, HTG,. (18b) 

If m k is the only outlier, x/~* is unbiased and 

HkCkHkGkd= R~Gkd. (19) E ( r ; ) = d -  n T 

(The expectation is taken over all outliers with the same 
d.) Xs z is again noncentrally x2-distributed with the 
noncentral parameter ?~s: 

~k S T n = d GkRkGkd. (20) 

If we compare A s and ~F, we find that 

As - ~'F = dVGk (RT, - Rk)Gkd  

T T T k ,, )AkHkGkd>_ 0, = d  GkHkAk(Ck+ 1 - C k + l  
(21) 

since it is easily shown by induction that C~+ 1 - C ~ +  I 
is positive definite. Therefore the test on XZs is always 
more powerful than the test on X 2 = X  2. This is in 
agreement with the intuitive reasoning. Also, the global 
X 2 being the sum of all filtered chi-squares, the test on 
the global X z is always less powerful than the test on 
X 2. This means that a search for possible outliers should 
be performed during smoothing, when the full informa- 
tion on the track parameters is available. It is clear that 
outliers with large d are found more frequently than the 
ones with small d; fortunately the latter are less harm- 
ful, as they introduce less bias into the final estimate. 

If mk is an outlier and has to be removed perma- 
nently from the track, one may just continue smoothing 

" and C~. How- n,  and C~* instead of with x k with x k 
ever, this does not update the estimates x~ with j > k. 
If the whole track has to be updated, the filter has to be 

k 1 and without using m k recomputed, starting from x k 
followed by smoothing back over the whole track. 

6.  A p p l i c a t i o n  o f  the  K a l m a n  f i l t e r  to  a v e r t e x  f i t  

We show now that the fast vertex fit proposed in ref. 
[2] is a special case of a nonlinear Kalman filter. Ini- 
tially the state vector consists only of the prior informa- 
tion about the vertex position, x 0 and C o =  cov(x0}.  
For  each 5-vector Pk of fitted track parameters the state 
vector is augmented by the 3-vector qk of momentum of 
track k at the vertex. The system equation is particu- 
larly simple: 

xk = xk -  i. (22) 

The measurement equation is - in the presence of a 
magnetic field - nonlinear: 

Pk = h k ( x k ,  qk) + {k- (23) 

As usual, we linearize h k in some point (xk. 0, qk.0): 

h k (  x k ,  qk )  = hk(xk,0,  qk,o) + A k ( x k  -- Xk.o) 

+ Ilk (qk -- qk,o ) 

= ck.0 + Akxk + Ilkqk" (24) 
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Since there is usually no prior information about qk, we 
assign an "infini te" covariance matrix to the "predic- 
ted" vector q~-  a: 

D~ ] = c o v ( q ~  -1} = ( 1 / 8 ) 1 ,  ~ small. (25) 

Then the prediction equations look as follows: 

k - I  q ~ - I  (26) Xk = X k  1, = q k , O ,  

Ckk ' = Ck_] ,  D~-1 = ( 1 / 8 ) 1 .  

We derive now the filter equations in the weighted 
means formulation: 

k- - I  --1 k 1 R T 

(27a) 

[ ] = . T • ' 
C k E k [Ck-_] l -F ATGkAk AkGkBk ] 

T BkGkBk ] E T Dk [ BkGkAk T " 

(27b) 

After some matrix algebra and taking the limit 8--* 0 
we obtain the following results which are identical to 
the ones in ref. [2]: 

T B xk = Ck [C[-],Xk - ] + AkGk (Pk - -  Ck,0)]  ' 

T 
q k  = W k B k G k (  P k  -- Ck,o -- A k X k ) ,  

C - 1  T B - 1  Ck = ( k - ,  + A k G k A k )  , (28) 

= W k B k G k A k C k A k G k  k k ,  Dk Wk + T T B W 

T A - WkBkGk kCk, E k =  

with 

T - 1  
W k =  (BkGkRk) , 

G B = Gk T -- GkBkWkBkGk, 

cov{x  k} = C  k, cov{q k) = D  k, cov{x k ,qk}  =Ek.  

The X 2 increment is given by (see eq. (8b)): 

T 
x~ = ( m  - ok,0 - A~Xk - Bkqk) G,  

× (Pk - Ck,0 - -  AkXk -- Bkqk) (29) 

- ] - (Xk  -- ~k-- ])T Ck_l , ( X k _ _ X k _ ] ) "  

X 2 = X2k 1 + X 2. 

If necessary, the linear expansion can now be repeated 
in the new point: 

Xk,o  = X k ,  qk,O = q k ,  

and the filter can be recomputed, until there is no 
significant change either in the X 2 or in the estimate. 

Since there is no process noise, the smoother is ex- 
tremely simple: 

n 
X k : X n , 

n = W T AkX.) ,  q k  k BkGk ( P k  --  Ck,o - -  

C2 = C°,  (30) 
n T n T D k -- W k + WkBkGkAkCkAkGkBkW k, 

- WkBkGkAkC k. E~,= T n 

If there is a significant change in the smoothed vertex 
position, it may be worthwhile to recompute the deriva- 
tive matrices A k and B k. 

7. D e t e c t i o n  of  s econdary  vert ices  

We assume that only a few tracks originate possibly 
from a secondary vertex, so that the estimated position 
of the primary vertex has no noticeable bias. Again, the 
filtered or smoothed residuals can be used to decide 
whether or not a particular track really does belong to 
the primary vertex. The residuals and their covariance 
matrices have the following form (see eqs. (8) and (9)): 

rk = P k  -- Ck,O -- A k X k  -- B k q k ,  

B B T B R k = V k (G k - GkAkCkAkGk )Vk, (31) 

¥~ = P k  -- Ck,O -- AkXn --  B k q ~ ,  

B T B S~ = V k (G B - GkAkC,,AkG * )V k. 
Since R k and R~ are singular the filtered chi-square X 2 
and the smoothed chi-square X 2 have to be computed 
in the following way (see eq. (29)): 

x2 T =r~Gk"k+(Xk- -X~  , ) T c ; 2 ] ( X ~ - - X k _ , ) ,  (32a) 

X 2 = rnTr~  n n .  - n .  k I k ~ k r k ~ - ( X n - - X k  ) T ( c ;  * ) ] ( X n - - X k  ) '  

(32b) 

"* is the smoothed estimate x n with the track where x k 
Pk removed. It is obtained by the inverse Kalman filter 
(see eq. (12)): 

C,~* (Cn -1 T B - 1  = -- A k G k A k )  , ( 3 3 )  

X ~ *  C~* I O n  l x .  V B __ = --AkGk(Pk Ck,O)]. 

If Pk belongs to the primary vertex, X 2 and Xs z are 
x2-distributed with 2 degrees of freedom. If Pk originates 
from a secondary vertex z not too far from the primary 
vertex x, we can write in linear approximation: 

p~ = h k ( x ,  qk,,) + Ak(z - x )  + , ~ .  

We may choose z in such a way that d = z - x  is 
orthogonal to qk,," The impact parameter of track k is 
then given by I d]  and the offset of Pk with respect to 
the primary vertex by 

E{ P k  -- Ck,O -- A k X  -- B k q k , ,  } = A k d .  
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In analogy to eqs. (15) and (20) we can now compute 
the noncentral parameters of X 2 and X~: 

__ T T B B T B )t F - d Ak(G k - GkAkCkAkGk)Aka ,  (34a) 

B T B X s = dTAI  (G~ - G k A k C . A k G  k )AJ. (34b) 

With X v and )~s we can in turn compute the power of 
the respective X 2 test (see appendix). 

By partial integration we obtain the following recur- 
sion: 

~ g ( 2 j ;  x )  dx  = i ° ~ g ( 2 j -  2; x )  dx  

exp( - c/2)  c j -  1 
+ 

2J l(j_ 1)! 
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A ppen d ix  

The power of a X 2 test 

Let us assume that X 2 is distributed according to a 
X 2 distribution g(n; x)  if the hypothesis H 0 is true and 
according to a noncentral X 2 distribution g(n, )t; x)  if 
H l is true. Let c be equal to the ( l - a )  quantile of 
g(n; x). 

Then the power function p(n,  X, a) of the X 2 test 
with respect to the hypothesis H a is given by: 

f p ( n ,  X, a ) =  g (n ,  X; x )  dx.  

In order to compute p, we expand g(n, X; x) into a 
(uniformly convergent) series of central X 2 probability 
density functions [11]: 

g(n X; ) ~. e x p ( - X / 2 ) X k g (  , x = n + 2 k :  x ) .  
k-0  2kk! 

Then we have: 

p(n, x, .) 

= ~ e x p ( - X / 2 ) X ~  f . ~ g ( n +  2k;  x ) d x .  
k=0 2kk[ 

Hence we have: 

g ( 2 n + k ;  x ) = a + i =  1 2ii! 

a n d 1  

p ( n ,  )~, a) = a + e x p ( - X / 2 )  e x p ( - c / 2 )  

× ~  xk ~ - c  ~ 
k=l 2kk[ i~-1 2'i! 
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